AP Calculus Curriculum Map

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks /Days)
Link for more detail from the College Board https://apcentral.co llegeboard.org/pdf/ ap-calculus-ab-and -bc-course-and-ex am-description.pdf	Unit 1 Limits and Continuity	 1.1 Introducing calculus: Can change occur at an instant? 1.2 Defining limits and using limit notation 1.3 Estimating limit values from graphs. 1.4 Estimating limit values from tables. 1.5 Determining limits using algebraic properties of limits. 1.6 Determining limits using algebraic manipulation. 	Textbook AP questions College Board materials Teacher created materials	Homework Quizzes Tests Personal Progress Checks from the College Board	September October

	1.7 Selecting procedures for determining limits.		
	1.8 Determining limits using the squeeze theorem.		
	1.9 Connecting multiple representations of limits.		
	1.10 Exploring types of discontinuities.		
	1.11 Defining continuity at a point.		
	1.12 confirming continuity over an interval.		
	1.13 Removing discontinuities.		
	1.14 Connecting infinite limits and vertical asymptotes		

	 1.15 Conncting limits at infinity and horizontal asymptotes. 1.16 Working with the intermediate value theorem (IVT) 			
Unit 2 Differentiation: Definition and basic derivative rules	 2.1 Defining average and instantaneous rates of change at a point. 2.2 Defining derivative of a function and using derivative notation 2.3 Estimating derivatives of a function at a point. 2.4 Connecting differentiability and continuity: Determining when derivatives do and do not exist. 2.5 Applying the 	Textbook AP questions College Board materials Teacher created materials	Homework Quizzes Tests Personal Progress Checks from the College Board	October November

	 power rule. 2.6 Derivative rules: Constant, sum, difference, and constant multiple 2.7 Derivatives of cos x, sin x, e^x, and ln x 2.8 The product rule 2.9 The quotient rule. 2.10 Finding the derivatives of Tangent, Cotangent, secant, and/or Cosecant functions. 			
Unit 3 Differentiation: Composite, implicit, and inverse functions	3.1 The chain rule3.2 Implicitdifferentiation3.3 Differentiatinginverse functions	Textbook AP questions College Board materials Teacher created materials	Homework Quizzes Tests Personal Progress Checks from the College Board	November

	 3.4 Differentiating inverse trigonometric functions 3.5 Selecting procedures for calculating derivatives 3.6 Calculating higher order derivatives 			
Unit 4 Contextual applications of differentiation	 4.1 Interpreting the meaning of the derivative in context. 4.2 Straight line motion: connecting position, velocity, and acceleration. 4.3 Rates of change in applied contexts other than motion. 4.4 Introduction to related rates. 4.5 Solving related 	Textbook AP questions College Board materials Teacher created materials	Homework Quizzes Tests Personal Progress Checks from the College Board	November December

	rates problems. 4.6 Approximating values of a function using local linearity and linearization 4.7 Using L'Hospital's rule for determining limits of indeterminate form.			
Unit 5 Analytical applications of differentiation	 5.1 Using the mean value theorem. 5.2 Extreme value theorem, global versus local extrema, and critical points 5.3 Determining intervals on which a function is increasing or decreasing. 5.4 using first derivative test to 	Textbook AP questions College Board materials Teacher created materials	Homework Quizzes Tests Personal Progress Checks from the College Board	December January

	determine relative (local) extrema.		
	5.5 Using candidates test to determine absolute (global) extrema		
	5.6 Determining the concavity of functions over their domains.		
	5.7 Using second derivative test to determine extrema.		
	5.8 Sketching graphs of functions and their derivatives.		
	5.9 Connecting a function, its first derivative, and its second derivative.		
	5.10 Introduction to optimization problems.		

	5.11 Solving optimization problems.5.12 Exploring behaviors of implicit relations.			
Unit 6 Integration and accumulation of change	 6.1 Exploring accumulations of change 6.2 Approximating areas with Riemann sums. 6.3 Riemann sums, summation notation, and definite integral notation. 6.4 The fundamental theorem of calculus and accumulation functions. 6.5 Interpretingthe behavior of accumulation functions involving 	Textbook AP questions College Board materials Teacher created materials	Homework Quizzes Tests Personal Progress Checks from the College Board	February March

	area. 6.6 Applying		
	properties of definite integrals		
	6.7 The fundamental theorem of		
	definite integrals		
	6.8 Finding antiderivatives and indefinite integrals: basic rules and		
	notation. 6.9 Integrating		
	using substitution.		
	6.10 Integrating functions using long division and completing the square.		
	6.11-6.12 BC ONLY		
	6.14 Selecting techniques fo antidifferentiation.		

Unit 7 Differential equations	 7.1 Modeling situations with differential equations. 7.2 Verifying solutions for differential equations. 7.3 sketching slope fields. 7.4 Reasoning using slope fields. 7.5 BC Only 7.6 Finding general solutions using separation of variables. 7.7 Finding particular solutions using initial conditions and separation of variables. 	Textbook AP questions College Board materials Teacher created materials	Homework Quizzes Tests Personal Progress Checks from the College Board	March April
	7.8 Exponential models with differential			

	equations.			
Unit 8 Applications of integration	 8.1 Finding teh average values of a function on an interval 8.2 Connecting position, velocity, and acceleration of functions using integrals. 8.3 Using accumulation functions and definite integrals in applied contexts. 8.4 Finding the area between curves expressed as functions of x 8.5 Finding the area between curves expressed as functions of y. 8.6 Finding the area between curves that intersect at more 	Textbook AP questions College Board materials Teacher created materials	Homework Quizzes Tests Personal Progress Checks from the College Board	April May

	than two points. 8.7 Volumes with cross sections: squares and rectangles 8.8 Volumes with cross sections: triangles and semicircles 8.9 Volume with disc method: revolving around the x- or y-axis. 8.10 Volume with disc method: revolving around other axes.			
	revolving around other axes. 8.11 Volume with washer method: revolving around the x- or y-axis 8.12 Volume with washer method: revolving around other axes.			
AP EXAM REVIEW		Textbook	Homework	Мау

	AP c Colle mate Teac mate	questions lege Board terials icher created terials	Quizzes Tests Personal Progress Checks from the College Board	June
--	---------------------------------------	--	--	------